Texas-instruments SLVU013 User Manual Page 1

Browse online or download User Manual for Tools Texas-instruments SLVU013. Texas Instruments SLVU013 User Manual [en] [ru] [de] [es] [fr] [it]

  • Download
  • Add to my manuals
  • Print

Summary of Contents

Page 1 - User’s Guide

     June 1999 Mixed-Signal Linear ProductsUser’s GuideSLVU013

Page 2

Synchronous Buck Regulator Operation1-21.1 Synchronous Buck Regulator OperationThe synchronous buck converter is a variation of the traditional buckco

Page 3 - Read This First

Hysteretic Control Operation1-3Introduction1.2 Hysteretic Control OperationHysteretic control, also called bang-bang control or ripple regulator contr

Page 4 - Trademarks

Design Strategy1-41.3 Design StrategyThe SLVP111–114 evaluation modules (EVMs) are optimized for 5-V maininput voltage and 6-A output current. The EVM

Page 5 - Contents

Design Specification Summary1-5Introduction1.4 Design Specification SummaryThis section summarizes the design requirements of the EVM converters.Altho

Page 6

Design Specification Summary1-6Table 1–2.EVM Converter Operating Specifications (Continued)Specification Min Typ Max UnitsOutput ripple||SLVP111 (3.3

Page 7 - Contents

Schematic1-7Introduction1.5 SchematicFigure 1–3 shows the EVM converter schematic diagram. The schematicdiagrams for the other EVM converters are iden

Page 8

Bill of Materials1-81.6 Bill of MaterialsTable 1–3 lists materials required for the SLVP111–114 EVMs.Table 1–3.SLVP111–114 EVMs Bill of MaterialsRef D

Page 9

Bill of Materials1-9IntroductionTable 1–3.SLVP111–114 EVMs Bill of Materials (Continued)Ref Des Part Number Description MFGR7 Std Resistor, Chip, 1 kΩ

Page 10

Board Layout1-101.7 Board LayoutFigures 1–4 through 1–7 show the board layouts for the SLVP111–114evaluation modules.Figure 1–4. Top AssemblyTop Assem

Page 11 - Introduction

Board Layout1-11IntroductionFigure 1–7. Bottom Layer (Top VIew)Bottom Layer (Top View)

Page 12 - 1.3 Design Strategy

IMPORTANT NOTICETexas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinueany product or servic

Page 14

2-1Design Procedure Design ProcedureThe SLVP111–114 are dc-dc synchronous buck converter evaluation modules(EVMs) that provide a regulated output volt

Page 15 - 1.5 Schematic

TPS56xx Functions2-22.1 TPS56xx FunctionsThe functional block diagram of the TPS56xx family of controllers is given inFigure 2–1. The controller has t

Page 16 - 1.6 Bill of Materials

TPS56xx Functions2-3Design ProcedureFigure 2–1. TPS56xx Functional Block DiagramINHIBITOCPSLOWSTIOUTBIASDRVBOOTHIGHDRBOOTLOLOWDRDRVGNDHISENSEIOUTLOLOS

Page 17 - Bill of Materials

TPS56xx Functions2-42.1.2 InhibitThe inhibit circuit is a comparator with a 2.1-V start voltage and a 100-mVhysteresis. When inhibit is low, the outpu

Page 18 - 1.7 Board Layout

TPS56xx Functions2-5Design ProcedureRVREFB+3.3V165 mA+ 20kWThis value is used to determine the values of R10 and R14 that set thehysteresis level.The

Page 19 - Board Layout

TPS56xx Functions2-6Note that Vdel is independent of the output voltage.To calculate Vdel for this example design, use the component measurementsgiven

Page 20

TPS56xx Functions2-7Design Procedure2.1.5 Noise SuppressionHysteretic regulators, by nature, have a fast response time to VO transientsand are thus in

Page 21 - Design Procedure

TPS56xx Functions2-8Figure 1–3). This arrangement improves efficiency over solutions having aseparate current sensing resistor. The drain of the high-

Page 22 - 2.1 TPS56xx Functions

TPS56xx Functions2-9Design Procedureresistor-divider network is designed so that the voltage applied to OCP is100 mV for the desired output current li

Page 23 - Undervoltage Lockout

Information About Cautions and Warningsiii Read This FirstPrefaceRead This FirstAbout This ManualThis user’s guide describes techniques for designin

Page 24 - 2.1.3 Slowstart Design

TPS56xx Functions2-10An alternate current sensing scheme is to insert a current sense resistor inseries with the drain of Q1. Higher accuracy may be o

Page 25 - 2.1.4 Hysteresis Setting

TPS56xx Functions2-11Design ProcedureFigure 2–4. Gate Driver Block DiagramLevelShifter/PredriverM145 ΩM25 ΩBOOTHIGHDRC4BOOTLOHighside DriverPredriverM

Page 26

TPS56xx Functions2-12Figure 2–5. I–V Characteristic Curve for Low-Side Gate DriversDriver Output Voltage – 1 V/divDriver Sink Current – 0.5 A/divThe h

Page 27 - 2.1.6 Overcurrent Protection

TPS56xx Functions2-13Design ProcedureLOHIB (pin 11) is an inhibit input for the low-side MOSFET driver. This inputhas to be logic low before the low-s

Page 28 - Sensing Circuit

External Component Selection2-142.2 External Component SelectionThis section shows the procedure used in designing and selecting the powerstage compon

Page 29

External Component Selection2-15Design Procedureperformance in response to fast load transients encountered when supplyingpower to current- and next-g

Page 30 - 2.1.10 Gate Drivers

External Component Selection2-16for the particular application. In addition, the capacitor(s) must have an ampleripple current rating to handle the ap

Page 31 - TPS56xx Functions

External Component Selection2-17Design ProcedureVL+L ITRANtåLvVLITRAN tWhere:VL= the voltage applied across the output inductor,ITRAN = the magnitu

Page 32

External Component Selection2-18Figure 2–6. Output Ripple Voltage Detail(a) Current waveform through output capacitor(b) Voltage waveform across ideal

Page 33

External Component Selection2-19Design ProcedurePeak to peak value of the inductor current ∆I is given by the following equation:I+VI–Io ǒRDS(on))RLǓ

Page 34

TrademarksivRelated Documentation From Texas InstrumentsSynchronous Buck Converter Design Using TPS56xx Controllers inSLVP10x EVMs User’s Guide (lite

Page 35 - External Component Selection

External Component Selection2-20of power losses and additional voltage drops through non-ideal components.Equation (4) should be sufficiently accurate

Page 36

3-1Test Results Test ResultsThis chapter shows the test setups used, and the test results obtained, indesigning the SLVP111–114 EVMS.Topic Page3.1 Tes

Page 37

Test Summary3-23.1 Test SummaryThe detailed test results and waveforms are presented in Figures 3–2 to 3–10for the SLVP111, Figures 3–11 to 3–19 for t

Page 38

Test Summary3-3Test Resultsin a linear fashion. There is no discernable overshoot in the waveforms. In thisapplication, output voltage rise time is s

Page 39

Test Summary3-43.1.8 ConclusionThe test results of the SLVP111/112/113/114 EVMs demonstrate theadvantages of TPS56xx controllers to meet stringent sup

Page 40 - 2.2.5 Power MOSFET Selection

Test Setup3-5Test Results3.2 Test SetupFollow these steps for initial power up of the SLVP112:1) Connect an electronic load from Vout to PwrGND (J1-15

Page 41 - Test Results

Test Setup3-6Figure 3–1. Test Setup5V Power Supply+–Load+–12-V Power Supply+–

Page 42 - 3.1 Test Summary

Test Results3-7Test Results3.3 Test ResultsFigures 3–2 to 3–102 show test results for the SLVP111.Figure 3–2. SLVP111 Measured Load Regulation3.2953.2

Page 43 - 3.1.7 Features

Test Results3-8Figure 3–4. SLVP111Measured Power Dissipation1.510.500123456Ploss – W2SLVP111 MEASURED POWER DISSIPATION2.5Vin = 4.5 VVin = 5 VVin = 5.

Page 44 - 3.1.8 Conclusion

Test Results3-9Test ResultsFigure 3–6. SLVP111 Measured Switching WaveformsC3 Pk–Pk50.8 mVC3 Frequency130.088 kHzLow SignalAmplitudeC4 Max5.20 VC4 + D

Page 45 - 3.2 Test Setup

Running Title—Attribute Referencev Chapter Title—Attribute ReferenceContents1 Introduction 1-1. . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 46 - Figure 3–1. Test Setup

Test Results3-10Figure 3–8. SLVP111 Measured Start-Up (VCC) WaveformsC3 Pk–Pk3.36 VC3 Rise7.300 msLow SignalAmplitudeC3 + Over2.5%VO2 V/divVCC (12 V)5

Page 47 - 3.3 Test Results

Test Results3-11Test ResultsFigure 3–10. SLVP111 Measured Load Transient WaveformsC3 Pk–Pk208 mVC2 High6.5 VVO100 mV/div6.5 AIO5 A/div2.5 µs/divFigure

Page 48

Test Results3-12Figure 3–12. SLVP112 Measured EfficiencySLVP111 MEASURED EFFICIENCYVin = 5.5 VVin = 4.5 VVin = 5 V84828078123456Eficiency – %868890IO

Page 49

Test Results3-13Test ResultsFigure 3–14. SLVP112 Measured Switching Frequency22520017515001234 56Frequency – kHz250275SLVP112 MEASURED SWITCHING FREQU

Page 50 - ) Waveforms

Test Results3-14Figure 3–16. SLVP112 Measured Start-Up (INHIBIT) WaveformsC3 Pk–Pk2.64 VC3 Rise7.885 msC3 + Over3.2%VO1 V/divINHIBIT1 V/div2.5 ms/divF

Page 51

Test Results3-15Test ResultsFigure 3–18. SLVP112 Measured Start-Up (VIN) WaveformsC3 Pk–Pk2.60 VC3 Rise7.635 msC3 + Over3.2%VO1 V/divVIN (5 V)1 V/div2

Page 52

Test Results3-16Figure 3–20. SLVP113 Measured Load RegulationVin = 5.5 VVin = 4.5 VVin = 5 V1.81.79751.79501234561.8025SLVP113 MEASURED LOAD REGULATIO

Page 53

Test Results3-17Test ResultsFigure 3–22. SLVP113 Measured Power Dissipation0123456IO – AVin = 5.5 VVin = 4.5 VPloss – WSLVP113 MEASURED POWER DISSIPAT

Page 54

Test Results3-18Figure 3–24. SLVP113 Measured Switching WaveformsC3 Pk–Pk34.8 mVC3 Frequency285.52 kHzLow SignalAmplitudeC5 Max5.80 VVO20 mV/divVDS Q2

Page 55

Test Results3-19Test ResultsFigure 3–26. SLVP113 Measured Start-Up (VCC) WaveformsC3 Pk–Pk1.84 VC3 Rise7.195 msLow SignalAmplitudeC3 + Over2.3%VO2 V/d

Page 56

Running Title—Attribute ReferenceviFigures1–1 Simplified Synchronous Buck Converter Schematic 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 57

Test Results3-20Figure 3–28. SLVP113 Measured Load Transient WaveformsC3 Pk–Pk112 mVC2 High3.64 VVO100 mV/divIO5 A/div3.6 A25 µs/divFigure 3–29. SLVP1

Page 58

Test Results3-21Test ResultsFigure 3–30. SLVP114 Measured EfficiencyVin = 5.5 VVin = 4.5 VIO – AVin = 5 V7773696512 3 4 56Efficiency – %8183SLVP114 ME

Page 59

Test Results3-22Figure 3–32. SLVP114 Measured Switching FrequencyFrequency – kHzVin = 5.5 VVin = 4.5 VVin = 5 VIO – A3253002502000123456350375SLVP114

Page 60

Test Results3-23Test ResultsFigure 3–34. SLVP114 Measured Start-Up (INHIBIT) WaveformsC3 Pk–Pk1.56 VC3 Rise6.990 msLow SignalAmplitudeC3 + Over2.8%VO1

Page 61

Test Results3-24Figure 3–36. SLVP114 Measured Start-Up (VIN) WaveformsC3 Pk–Pk1.56 VC3 Rise7.07 msLow SignalAmplitudeC3 + Over2.7%VO1 V/divVIN (5 V)1

Page 62

Running Title—Attribute Referencevii Contents3–27 SLVP113 Measured Start-Up (VIN) Waveforms 3-19. . . . . . . . . . . . . . . . . . . . . . . . . .

Page 64

1-1Introduction IntroductionThe SLVP111/112/113/114 evaluation modules (EVMs) have been designedand tested using the TPS56xx hysteretic controllers. T

Comments to this Manuals

No comments